Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules

نویسندگان

  • Benjamin Quost
  • Marie-Hélène Masson
  • Thierry Denoeux
چکیده

When combining classifiers in the Dempster-Shafer framework, Dempster’s rule is generally used. However, this rule assumes the classifiers to be independent. This paper investigates the use of other operators for combining non independent classifiers, including the cautious rule and, more generally, t-norm based rules with behavior ranging between Dempster’s rule and the cautious rule. Two strategies are investigated for learning an optimal combination scheme, based on a parameterized family of tnorms. The first one learns a single rule by minimizing an error criterion. The second strategy is a two-step procedure, in which groups of classifiers with similar outputs are first identified using a clustering algorithm. Then, withinand between-cluster rules are determined by minimizing an error criterion. Experiments with various synthetic and real data sets demonstrate the effectiveness of both the single rule and two-step strategies. Overall, optimizing a single t-norm based rule yields better results than using a fixed rule, including Dempster’s rule, and the two-step strategy brings further improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking object's type changes with fuzzy based fusion rule

In this paper the behavior of three combinational rules for temporal/sequential attribute data fusion for target type estimation are analyzed. The comparative analysis is based on: Dempster’s fusion rule proposed in Dempster-Shafer Theory; Proportional Conflict Redistribution rule no. 5 (PCR5), proposed in Dezert-Smarandache Theory and one alternative class fusion rule, connecting the combinati...

متن کامل

Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1

In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...

متن کامل

A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence

This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...

متن کامل

An Intelligent Classifier Fusion Technique for Improved Multimodal Biometric Authentication Using Modified Dempster-shafer Rule of Combination

Multimodal biometric technology relatively is a technology developed to overcome those limitations imposed by unimodal biometric systems. The paradigm consolidates evidence from multiple biometric sources offering considerable improvements in reliability with reasonably overall performance in many applications. Meanwhile, the issue of efficient and effective information fusion of these evidence...

متن کامل

Designing a Home Security System using Sensor Data Fusion with DST and DSMT Methods

Today due to the importance and necessity of implementing security systems in homes and other buildings, systems with higher certainty, lower cost and with sensor fusion methods are more attractive, as an applicable and high performance methods for the researchers. In this paper, the application of Dempster-Shafer evidential theory and also the newer, more general one Dezert-Smarandache theory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2011